首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7999篇
  免费   1473篇
  国内免费   1388篇
测绘学   443篇
大气科学   593篇
地球物理   1589篇
地质学   5137篇
海洋学   489篇
天文学   17篇
综合类   549篇
自然地理   2043篇
  2024年   25篇
  2023年   99篇
  2022年   286篇
  2021年   407篇
  2020年   373篇
  2019年   361篇
  2018年   342篇
  2017年   352篇
  2016年   368篇
  2015年   398篇
  2014年   500篇
  2013年   641篇
  2012年   452篇
  2011年   523篇
  2010年   454篇
  2009年   476篇
  2008年   460篇
  2007年   520篇
  2006年   541篇
  2005年   482篇
  2004年   423篇
  2003年   316篇
  2002年   269篇
  2001年   248篇
  2000年   213篇
  1999年   247篇
  1998年   197篇
  1997年   146篇
  1996年   139篇
  1995年   123篇
  1994年   101篇
  1993年   86篇
  1992年   73篇
  1991年   55篇
  1990年   37篇
  1989年   27篇
  1988年   37篇
  1987年   23篇
  1986年   9篇
  1985年   9篇
  1984年   7篇
  1983年   3篇
  1982年   2篇
  1979年   3篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
排序方式: 共有10000条查询结果,搜索用时 390 毫秒
81.
Biological soil crust, or biocrust communities, are the dominating life form in many extreme habitats, such as arid and semiarid badlands, where water scarcity and highly erodible substrates limit vegetation cover. While climate, soil and biotic factors have been described as environmental filters influencing biocrust distribution in such biomes, little is known about the effect of terrain attributes on creating specific microhabitats that promote or restrict biocrust colonization. This study aimed to identify the main terrain attributes controlling biocrust distribution in the driest badland system in Europe, the Tabernas Badlands (SE Spain). To do this, we analysed the influence of different terrain attributes related to landscape stability and microclimate formation on the spatial distribution of lichen and cyanobacteria, using field measurements and topographical information from a LiDAR survey. Our results showed that the spatial distribution of cyanobacteria-dominated biocrusts, which are physiologically and morphologically adapted to extreme drought and high UVA radiation, was mostly associated with areas of high potential incoming solar radiation. The exception was bare south-aspect hillslopes with very high sediment transport potential, where bare physically crusted soils were the dominant ground cover. Lichen-dominated biocrusts, in contrast, colonized near the top of north-aspect hillslopes, characterized by low potential incoming solar radiation and potential evapotranspiration, and their cover decreased downstream, as conditions became good enough for vascular plants. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   
82.
健康是影响不同国家和地区发展的关键因素,全面了解“一带一路”成员国的居民健康状况,是探讨“一带一路”成员国之间健康医疗合作的重要基础。本文选择了4个代表性的健康状况指标(出生期望寿命、总生育率、过早非传染性疾病死亡率和结核病发病率),利用Moran's I指数、Getis-Ord G指数对“一带一路”135个成员国的健康状况进行时空统计,分析了健康状况的空间相关性和空间分布模式,研究了健康状况的时空格局。研究发现:① 2000—2016年“一带一路”大部分成员国的各项健康状况指标均朝着改善和优化方向发展;健康状况指标均呈现显著的正空间自相关性;② 总体而言,在“一带一路”成员国中,欧洲国家的居民健康状况最好;南北美洲和大洋洲国家的居民健康状况良好;亚洲国家的居民健康状况总体良好,但东南亚部分国家的结核病发病率较高;非洲国家的居民健康状况虽有明显改善,但仍处于较低状态。因此,“一带一路”成员国应进一步加强健康医疗合作,共同推动健康丝绸之路的发展。  相似文献   
83.
Groundwater is a key factor controlling the growth of vegetation in desert riparian systems. It is important to recognise how groundwater changes affect the riparian forest ecosystem. This information will not only help us to understand the ecological and hydrological process of the riparian forest but also provide support for ecological recovery of riparian forests and water-resources management of arid inland river basins. This study aims to estimate the suitability of the Water Vegetation Energy and Solute Modelling(WAVES) model to simulate the Ejina Desert riparian forest ecosystem changes,China, to assess effects of groundwater-depth change on the canopy leaf area index(LAI) and water budgets, and to ascertain the suitable groundwater depth for preserving the stability and structure of desert riparian forest. Results demonstrated that the WAVES model can simulate changes to ecological and hydrological processes. The annual mean water consumption of a Tamarix chinensis riparian forest was less than that of a Populus euphratica riparian forest, and the canopy LAI of the desert riparian forest should increase as groundwater depth decreases. Groundwater changes could significantly influence water budgets for T. chinensis and P. euphratica riparian forests and show the positive and negative effects on vegetation growth and water budgets of riparian forests. Maintaining the annual mean groundwater depth at around 1.7-2.7 m is critical for healthy riparian forest growth. This study highlights the importance of considering groundwater-change impacts on desert riparian vegetation and water-balance applications in ecological restoration and efficient water-resource management in the Heihe River Basin.  相似文献   
84.
Mapping groundwater discharge zones at broad spatial scales remains a challenge, particularly in data sparse regions. We applied a regional scale mapping approach based on thermal remote sensing to map discharge zones in a complex watershed with a broad diversity of geological materials, land cover and topographic variation situated within the Prairie Parkland of northern Alberta, Canada. We acquired winter thermal imagery from the USGS Landsat archive to demonstrate the utility of this data source for applications that can complement both scientific and management programs. We showed that the thermally determined potential discharge areas were corroborated with hydrological (spring locations) and chemical (conservative tracers of groundwater) data. This study demonstrates how thermal remote sensing can form part of a comprehensive mapping framework to investigate groundwater resources over broad spatial scales. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
85.
Hydrological models are useful tools to analyze present and future conditions of water quantity and quality. The integrated modelling of water and nutrients needs an adequate representation of the different discharge components. In common with many lowlands, groundwater contribution to the discharge in the North German lowlands is a key factor for a reasonable representation of the water balance, especially in low flow periods. Several studies revealed that the widely used Soil and Water Assessment Tool (SWAT) model performs poorly for low flow periods. This paper deals with the extension of the groundwater module of the SWAT model to enhance low flow representation. The current two‐storage concept of SWAT was further developed to a three‐storage concept. This was realized due to modification of the groundwater module by splitting the active groundwater storage into a fast and a slow contributing aquifer. The results of this study show that the groundwater module with three storages leads to a good prediction of the overall discharge especially for the recession limbs and the low flow periods. The improved performance is reflected in the signature measures for the mid‐segment (percent bias ?2.4% vs ?15.9%) and the low segment (percent bias 14.8% vs 46.8%) of the flow duration curve. The three‐storage groundwater module is more process oriented than the original version due to the introduction of a fast and a slow groundwater flow component. The three‐storage version includes a modular approach, because groundwater storages can be activated or deactivated independently for subbasin and hydrological response unit level. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
86.
Assuming homogeneity in alluvial aquifers is convenient, but limits our ability to accurately predict stream‐aquifer interactions. Research is needed on (i) identifying the presence of focused, as opposed to diffuse, groundwater discharge/recharge to streams and (ii) the magnitude and role of large‐scale bank and transient storage in alluvial floodplains relative to changes in stream stage. The objective of this research was to document and quantify the effect of stage‐dependent aquifer heterogeneity and bank storage relative to changes in stream stage using groundwater flow divergence and direction. Monitoring was performed in alluvial floodplains adjacent to the Barren Fork Creek and Honey Creek in northeastern Oklahoma. Based on results from subsurface electrical resistivity mapping, observation wells were installed in high and low electrical resistivity subsoils. Water levels in the wells were recorded real time using pressure transducers (August to October 2009). Divergence was used to quantify heterogeneity (i.e. variation in hydraulic conductivity, porosity, and/or aquifer thickness), and flow direction was used to assess the potential for large‐scale (100 m) bank or transient storage. Areas of localized heterogeneity appeared to act as divergence zones allowing stream water to quickly enter the groundwater system, or as flow convergence zones draining a large groundwater area. Maximum divergence or convergence occurred with maximum rates of change in flow rates or stream stage. Flow directions in the groundwater changed considerably between base and high flows, suggesting that the floodplains acted as large‐scale bank storage zones, rapidly storing and releasing water during passage of a storm hydrograph. During storm events at both sites, the average groundwater direction changed by at least 90° from the average groundwater direction during baseflow. Aquifer heterogeneity in floodplains yields hyporheic flows that are more responsive and spatially and temporally complex than would be expected compared to more common assumptions of homogeneity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
87.
Event sediment transport and yield were studied for 45 events in the upstream part of the 260 km2 agricultural Koga catchment that drains to an irrigation reservoir. Discharge and turbidity data were collected over a period of more than a year, accompanied by grab sampling. Turbidity was very well correlated with the sediment concentrations from the samples (r = 0.99), which allowed us to estimate the temporal patterns of sediment concentrations within events. The hysteresis patterns between discharge and sediment concentrations were analysed to provide insight into the different sediment sources. Anticlockwise patterns are the dominant hysteresis patterns in the area, suggesting smaller contributions of suspended sediment from the river channels than from the hillslopes and agricultural areas. Complicated types of hysteresis patterns were mostly observed for long events with multiple peaks. For a given discharge, sediment yields in August and September, when the catchment was almost completely covered with vegetation, were much smaller than during the rest of the rainy season. The hysteresis patterns and timing suggest that the sediment availability from the agricultural areas and hillslopes affects sediment yields more strongly than does peak discharge. Two distinct types of sediment rating curves were observed for the season when the agricultural land was covered with vegetation and when it was not, indicating the dominating contribution of land use/cover to sediment yields in the catchment. The rate of suspended sediment transport in the area was estimated as 25.6 t year?1 ha?1. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
88.
The fresh groundwater lenses (FGLs) of small islands can be highly vulnerable to climate change impacts, including sea‐level rise (SLR). Many real cases of atoll or sandy islands involve two‐layer hydrogeological conceptualizations. In this paper, the influential factors that affect FGLs in two‐layer small islands subject to SLR are investigated. An analytical solution describing FGLs in circular islands, composed of two geological layers, is developed for the simplified case of steady‐state and sharp‐interface conditions. An application of the developed model is demonstrated to estimate the FGL thickness of some real‐world islands by comparison with existing FGL thickness data. Furthermore, numerical modelling is applied to extend the analysis to consider dispersion effects and to confirm comparable results for both cases. Sensitivity analyses are used to assess the importance of land‐surface inundation caused by SLR, relative to other parameters (i.e. thickness of aquifer layers, hydraulic conductivity, recharge rate and land‐surface slope) that influence the FGL. Dimensionless parameters are used to generalize the findings. The results demonstrate that land‐surface inundation has a considerable impact on a FGL influenced by SLR, as expected, although the FGL volume is more sensitive to recharge, aquifer thickness and hydraulic conductivity than SLR impacts, considering typical parameter ranges. The methodology presented in this study provides water resource managers with a rapid‐assessment tool for evaluating the likely impacts of SLR and accompanying LSI on FGLs.  相似文献   
89.
余蕾  张小毅 《岩矿测试》2021,(3):365-374
地下水中有机氯、多环芳烃、邻苯二甲酸酯等半挥发性有机污染物对生态环境和人体健康带来潜在威胁,开发高效、准确、快速的检测方法具有现实意义。通过液液萃取、固相萃取等方式将水中有机污染物分类萃取,利用气相色谱、气相色谱-质谱、液相色谱-质谱等方法测定,不能在满足低检出限的同时测定多种类别有机污染物。本文建立了一种改进的QuECHERS方法,即在水样中加入少量有机溶剂振荡后直接取有机相,无需净化,利用灵敏度更高的气相色谱-三重四极杆质谱仪多反应监测模式(MRM)进行定性、内标法定量,实现了44种有机污染物的同时测定。实验优化了质谱条件,对比了不同溶剂的提取效果以及传统方法和QuECHERS的优缺点。结果表明:44种有机物在1~200μg/L范围内线性关系良好,各有机物的检出限和回收率均满足要求。本方法具有前处理简单、检出限低、邻苯二甲酸酯类本底低、多类有机物同时测定等优点,可应用于地下水中痕量有机物的测定和评估。  相似文献   
90.
刘国栋  付勇  何伟  唐波  龙珍  杨颖  龙克树 《地质论评》2021,67(3):67040003-67040003
钪(Sc)作为新世纪的重要资源,广泛分布于自然界中,但其分布极为稀散,钪的独立矿物稀少,独立矿床几乎没有。铝土岩系中的钪资源储量巨大,本文统计了中国各铝土矿成矿带Sc数据,在对比山西(断隆)成铝区、华北陆块南缘成铝区、渝南—黔北成铝带、黔中成铝区和滇东南—桂西成铝区的数据基础上,发现滇东南—桂西成铝区的Sc含量最高,含钪铝土岩系形成时代主要为石炭纪和二叠纪。通过对比分析A/S与钪的关系,在A/S小于2.5,钪的含量总体较高,且与A/S正相关,大于2.5后,与A/S负相关。从而得出在铝土岩系中,Sc分布在顶层的黏土岩、中部的铁质铝土矿以及底部的铁质黏土岩、铁质岩,尤其是在含铁铝土岩系中高度富集。通过对比分析铝土岩系各元素含量,发现钪与铁、铌、钒、铬元素成正相关,综合铝土岩系中其他元素的矿物表现形式,推测钪在铝土岩系中的赋存形式可能为:类质同象、离子吸附、和超显微非结构混入物。本文初步探讨总结钪在铝土岩系中可能的赋存形式、时空分布规律及钪的迁移转化机制,为铝土矿中伴生钪资源的综合利用开发提供理论支撑。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号